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In this paper we give two non-trivial generalizations of a classical Bernstein
inequality which is apparently less known that that of Bernstein-Markov, viz.

for xE(-I, 1), where p is a real polynomial of degp":;k and Ilpll[-I,1J=
sUPlpl([ -1,1]), to the case of a compact set E in ~n with nonempty interior.
Contrary to the situation where estimates for p'(x) are sought on the whole
compact set, we do not, in general, need any other assumptions on E. Our results
point out connections between Bernstein's inequality and two important notions in
modern polynomial approximation theory on compacta in en: Siciak's extremal
function and complex equilibrium measure. © 1992 Academic Press, Inc.

1

Introduction and Statement of the Main Results. We start with some
classical inequalities for polynomials: the Bernstein-Markov inequality (see
[11])

(1.1) for x E ( -1, 1),

and the Bernstein inequality (see [9])

(1.2 ) Ip'(x)1 ::;; k(1 - x 2)-1/2 (11pll ~ -1,1] _ p2(X))1/2, for x E ( - 1, 1),

where p is a real polynomial with deg p ::;; k. It is easily seen that (1.1)
implies

(1.3) r Ip'(x)1 dx::;;nkllpll[_I,I]'
-1

* The contents of this paper comprises a slightly modified part of the author's Ph.D. thesis,
written at the lagiellonian University, under the direction of Professor Wieslaw Plesniak.
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The main goal of this paper is to prove analogous results in the multi
variate case. Let us begin with some definitions and facts from complex
analysis of several variables.

If E is a compact subset of cn (n)': 1) then we define Siciak's extremal
function cP £ as follows (see [19]).

104. DEFINITION. cPE(z) = sup(lp(zW'ctegp
: pEC[H'I, ...,lI'n], degp)':l,

IIpilE:::;; I}, for ZEen, where IlpIIE=suplpl(E). The above extremal func
tion is also called the polynomial extremal function as opposed to the
plurisubharmonic extremal function V£ and its upper regularization VJ
defined as follows.

1.5. DEFINITION. V£(z) = sup{ u(z): UE2;" u I£:::;; O}, for ZE en, where
2;, denotes the Lelong class of plurisubharmonic functions in cn
(briefly, PSH(en)) with logarithmic growth: 2;, = {u E PSH(iC"):
sup{ u(z) -log(1 + Izl): Z Ecn} < etJ}.

(1.6) Vl(z) = lum sup VE (lI'),

The crucial fact is that

1.7. ZACHARIUTA-SICIAK THEOREM (see [23, 20J). V£= log cP £.

For other properties of the extremal functions we refer the reader to
Siciak's papers [20,21]. We will need the notions of L-regularity and
pluripolarity.

1.8. DEFINITION. We call a compact set E L-regular at a point a E E if
Vi (a) = 0 and we say that E is L-regular if E is L-regular at every point
aEE. It is known (see [20,23]) that E is L-regular if and only if V£ is
continuous in C/. Often, it is possible to use the following geometrical
criterion for the L-regularity.

1.9. PROPOSITION (Cegrell [10], Plesniak [17], Sadullaev [18]). Given
a E E, suppose that there exists an analytic mapping h: [0, 1] ~ E such that
h(O)=a. If VI(h(t))=Ofor each tE(O, 1] then VI(a)=O.

A pluripolar set is defined as follows.

1.10. DEFINITION. We call a set E pluripolar if there exists a function
uEPSH(C n

) such that Ec {u= -ex:;,}.

If a compact set E is not pluripolar then VI E PSH(C/) n Ll~C(en) {see

640,'69;2-4
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[20]). In this case we define the complex equilibrium measure AE as the
value of the complex Monge-Ampere operator on the function V;.

1.11. DEFINITION. AE= (ddcV;t. Then AE is a Borel measure on C"
(for details we refer to Bedford and Taylor's paper [6]). We note that if
u E PSH n C 2(Q) then (ddCu)" is a Borel measure defined by

where V" is the Lebesgue measure in C". The main properties of the
complex equilibrium measure are contained in the following.

1.12. PROPOSITION [6,22]. If E is a non-pluripolar compact set in C",
then

where E= {ZEC": Ip(z)l:::;; IlpllEfor each pEC[W[, ..., w,,]}.

We now may formulate our main results. Let E be a compact set in ~".

We regard here ~" as a subset of C" such that C" =~" + i~". We need the
following definition.

1.13. DEFINITION. If E is a compact subset of ~" then we put

and

for x E E, where {e [, ..., e,,} is the standard orthonormal basis in ~".

1.1.4. THEOREM. Let E be a compact set in ~" with nonempty interior.
Then for every x E int(E) we have the following inequality for a real polyno
mial p

for j= 1, ..., n

and
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1.15. THEOREM. Let E be a compact L-regular set in IRn with nonempty
interior. Then the measure AElinl(E) is absolutely continuous with respect to
the Lebesgue measure and

vol ( conv {de~ p (1 - p2(X)) -li2 grad p(x): P E lR[z], deg p ~ 1.

IlplIE~ 1 and Ip(x)1 < 1 on int(E))} ~ :! A(X).

for almost every x E int(E) (with respect to the Lebesgue measure), where
A(x) dx = )'Elinl(E)' If n = 1, then the above equality reduces to

sup {-d1 (1- p2(X))-li2 Ip'(x)l: p E lR[z], deg p ~ 1,
eg p

Ilpll E~ 1 and Ip(x)1 < 1 on int(E)} ~ ~ A(X).

In this paper we prove only Theorem 1.14. It will be done in Section 2
while in Section 3 we discuss some special cases and examples to this
theorem. The proof of Theorem 1.15, which we omit here (because it is
more longer and difficult) will be published in a forthcoming paper [5 ]
(see also [3]). However, in Section 4 we present some examples and
applications of this theorem.

2

Proof of Theorem 1.14. The proof is based on the properties of the
Joukowski function and its inverse. For z E C \ {O} we define the
holomorphic function g(z) = (1/2)(z + l/z), called the Joukowski function.
It is univalent on Izi > 1 and its inverse is of the form h(z) = z + (Z2 -1 )!/2,

if we choose an appropriate branch of the square root. The function log Ihl
is subharmonic in C and it is well known that

cPr -1,1](Z) = Ih(z)l, for ZE C.

In our considerations the crucial role is played by the following equality for
the above defined function g:

(2.1 ) Ig(z)+ 11 + Ig(z)-ll =2g(lzl), z =1= O.

Note that every holomorphic in C\{O}, non-constant solution of Eq. (2.1)
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has a form g«az)P) with some a>O and pEN (see [2J). From (2.1) it
follows that

(2.2) Ih(z)1 =hWz+ 1 +~lz-11),

for each z EC, where at the right-hand side we have h(t) = t + (t 2 _1)1/2 for
t ~ 1 with the arithmetic root. It is easy to verify the following estimates for
the function h(t):

(2.3) .j2 (t - 1)1/2 - ~(t - 1)312 ~ log h(t) ~.j2 (t -1 )1/2

for every t ~ 1. An easy computation shows that the following proposition
holds.

2.4. PROPOSITION. (i) If a E ( -1, 1) and f. > 0, 13 E IR, then

(ii) If aE (-1, 1), O<f.~ 1/2, f3E IR, and 1131 ~ 1-lal, then

1
(1-f.) 1131 (1-a2)-1/2~-loglh(a+if.f3)l.

f.

Consider a real polynomial p with II p II E < 1. By well-known properties of
plurisubharmonic functions (see, e.g., [12J) we have loglh o pi E PSH(cn)
and moreover, by 2.2, we have (l/degp)loglh o pl E5l;,. Hence, by Defini
tion 1.5 we obtain

(2.5)
1

-d-Ioglh(p(z))1 ~ VE(z)
eg p

for every z Ecn. Taylor's formula for p now yields

(2.6)
am

p(x + if.ed = p(x) + if.DkP(x) + L 8"k p(x)(if.)m,
2::::;m~degp X

for 1~ k ~ n. It follows from Proposition 2.4 and (2.6) that

(2.7) lim ~loglh(p(x+if.ed)I=IDkP(x)1 (1_ p2(X))-1/2
s~o+ f.

for XE E. But (2.7) together with (2.5) implies

(2.8) Igrad p(x)1 :::; (deg p) Igrad + VE(x)1 (1- p2(X))1/2.

If now p is any real polynomial then we apply (2.8) to the polynomial
p/(lIpIIE+b), and letting b--+O+ completes the proof of Theorem 1.14.
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2.9. Remark. If E is a compact set in IR" then it follows easily that
tP E(Z) = sup{ Ih(p(z))ll/deg P: p E lR[w l , ... , It',,], deg p ~ 1, Ilpll E~ l}, where
h denotes, as in the whole paper, the inverse function to the Joukowski
function.

3

In this section we consider some special cases of Theorem 1.14. Let E be
a compact, convex, and symmetric subset of W with int(E) #- 0. By E* v\"e
denote the dual convex set to E:

E* = {x E W: x· y ~ 1 for each Y E E}.

It is known that

tPdz) = sup{lh(z. w)l: WE oE*},

for ZEC" (see [14,7]) and more precisely [1],

(3.1 ) tPdz)=sup{lh(z.w)l: wEextr(E*)},

where extr(E*) denotes the set of all extremal points of E*. In the special
case of E=BIl = {XEIR": xi+ ... +x~~ I} we have (see [15,1])

ZEC",

where z2=zi+ ... +z~.

An easy computation shows that

Igrad+ VsJx)1 = (n - 1+ (1- X2)-I)12 ~ ~(l- X
2)-1/2.

Thus it follows from Theorem 1.14 that for each real polynomial p

[grad p(x)1 ~ (deg p)(n - 1+ (1 - x 2)-I )1/2 (11pll ~n - p2(X))I/2,

for Ixi < 1, which extends the Bernstein inequality (1.2).
Let now f be any norm in 1R" and put E = {x E W: f(x) ~ I}. It is easy to
check that f(x)=sup{lx,wl: wEextr(E*)}. Since E is compact, convex,
and symmetric (with nonempty interior) it follows from (3.1) that

(3.2) lim ! VE(X + iBed
e~O+ B

=SUP{lek·wl (1_(x·w)2)-1!2: wEextr(E*)}

~f(ek)(I-f2(X))-112,
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if f(x) < 1. This yields the following generalization of the Bernstein
inequality:

3.3. PROPOSITION. Let E= {f(x)~ 1}, wherefis a norm in [Rn. Then

IDjp(x)1 ~ (deg p)f(ej)(l- f 2(x))-1!2 (1Ipll~- p2(X))1!2

if f(x) < 1, where p is any real polynomial and j = 1, ..., n.

It is clear that VE ~ VF' if FeE. A trivial verification shows that if a
compact set E has nonempty interior and x Eint(E) then

Igrad+ VE(x)1 ~ ~/dist(x, oE). (3.4 )

In particular, Igrad+ VE(x)1 is always finite if x is an interior point of E.

3.5. EXAMPLE. Let S" be the standard simplex in [R":

Sn={XE[Rn:X1,oo.,xn?:Oandx1+ ",+xn~I}.

Then (see [1]) we have epsJz)=h(lzll + ... + IZnl + IZI + ... +zn-11)
for Z Ecn. An easy computation shows that

Now we will prove an interesting version of Bernstein's inequality for
convex sets in [Rn. Let E be a compact, convex subset of [Rn with non empty
interior. For simplicity assume that 0 Eint(E). Then the following proposi
tion holds.

3.6. PROPOSITION (see [4]). If E is a compact, convex subset of IR" with
oEint(E) and E* is the convex dual set to E, then

I ( (z-d)·w )14>eCz) ~ inf sup h ,
dEint(E) WEK l-Id· w + PI

for ZEC n
,

where K = (2/(1 + IIXI)) extr(E*), IX = inf{x .y: x EE, Y EE*}, and P=
-(1 +IX)/(1 + IIXI).

Now, fix xEint(E). Let d'=(1/2)(x+d) for any dEint(E). By Proposi
tion 3.6 we obtain

. [ ((1/2)(X-d),W+ieeW)[
VE(x+ieeJ~ mf suplog h 1 Id' PI ] .

dEtnt(E) WEK - ·w+
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Hence we get

D/ Vdx):'( inf sup lej • wi (1-ld'· It' + PW I

dEint(E) wK

163

( (
(x-d).1V )2)-1'2

X 1 - 2( 1_ Id' . 11' + PI )

{
( 1 \2) 1,2

= inf sup Ie;· wi (l-Id'· It' + /31)2 - - (x - d)· I\' I ~
dEint(E) WEK \2 / J

:'( inf sup lej"wl(I-lx·It'+PI)-L2(I-ld'w+.Bi)-L2
dE int(E) WE K

:'( sup (Iej" wl/lwl)(dist(x, CE))-12
u:EK

inf (dist(d, CE))-l i 2.
dEint(E)

(Here e l , ••. , ell denotes the standard orthonormal basis in [R".) The above
inequality yields the following

3.7. THEOREM. Let E be a convex, compact subset of [R" and such that
oE int(E). Then for every real polynomial p we have the Bernstein inequality

for x E int(E), j = 1, ..., n, where the constant M is equal to

M= max sup (Iej,wl/lwl) inf (dist(d,cE))-l i
2.

j~ I, ...,,, WEK dEint(E)

3.8. Remark. If E is any compact, convex subset of [R" with nonempty
interior and bE int(E), then 0 E int(E - b) and we may apply Theorem 3.7
to the subset E - b. This gives the Bernstein inequality for the set E with
a different constant M than that of Theorem 3,7.

3.9. Remark. We shall say that a compact subset E of IR" (with
nonempty interior) has Bernstein's property if for every real polynomial p
the following inequalities hold:

ID;p(x)l:'( (deg p) M(dist(x, iJE))-fl (lIplli- p2{X))li2, for x E int(E).

j = 1, .... 11, where M> 0 and 0 < J1 < 1. Observe that every compact subset
of IR" with nonempty interior satisfies the above inequality with the con
stant f.1 = 1. We conjecture that every fat (E c int(E)) compact subset of ~"



164 MIROSLAW BARAN

j= 1, ..., n,

that preserves Bernstein's inequality with J1 < 1 has the following Markov
property: There exists a constant M such that for every real polynomial p,

IIDjpIIE~ M(deg p)~ IlpliE'

with IY. = 1/(1- J1).

We also note that the above conjecture is true in the case of compact,
convex sets (see [16]).

4

In this section we will prove the following two estimates for real polyno
mials resulting from Theorem 1.15.

4.1. THEOREM. Let E be an L-regular compact subset of IRn with noempty
interior. Then for almost every x E int(E) the following inequality holds

Igrad p(x)1 ~ 2-n(deg p) d(x) A(x)(llpll~- p2(X))1/2,

for a real polynomial p, where A(X) is the density on int(E) (with respect to
the Lebesgue measure) of the complex equilibrium measure and

d(x) = [(di-xi)· ... ·(d~-x~)(di-xi)-l+... +(d~_X~)~I)]1/2,

with dj = suplz) (E), j= 1, ..., n.

4.2. THEOREM. If E is a fat (E c int(E)) compact subset of IR n with zero
Lebesgue measure on iJE, then

f Igradp(x)1 dx~nn(degp)d(O) IlpiIE'
E

for any real polynomial p, where d(x) is defined in Theorem 4.1.

4.3. Proof of Theorem 4.1. Without loss of generality we can assume
Ip(x)1 < IlpIIE for xEint(E). From Theorem 1.15 it follows that

n! vol(conv{ ±(llpll~- p2(X))-1/2 grad p(x),

+(d2 2)-1/2 +(d2 2)-1/2 A +(d2 2)-1/2})_ I-Xl .el' ..., _ ; -X; e;, ..., _ n-Xn en

= n! 2nID;p(x)1 (1Ipll~- p2(X))-1/2 (di -Xi)-1/2 . .... (d~ _X~)-1/2

. (d; _X;)1/2 .vol(conv{O, el' ..., en})

= 2nID;p(x)1 (11pll ~ - p2(X)) -1/2 (di - xi) -1/2 ..... (d~ - X~) -1/2

. (d; - X;)1 /2~ A(X) for j = 1, ..., n and for almost every

X E int(E).
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Here e; denotes that the ± (d; - .,<-;)1/2 e; is missing. Combining these n
inequalities we obtain 4.1.

4.4. Proof of Theorem 4.2. Given a fat compact subset of rr:gn define

Fk = {x E E: dist(x, oE) ~ ~~
k)

and

Ek = U B(x,lj(k+l»,forkEN,
XEFk

where B(x, r) denotes the closed euclidean ball with center at x and radius
r. We have E k c Ek + 1 and int(E) = U int(Ed. Moreover, the sets E k are
compact, fact, and (by 1.9) L-regular. By 4.1 and 1.12 we obtain

r Igradp(x)1 dX~1!n(degp)d(O) [lpllE
'inl(Ed

and letting k ~ 00 gives 4.2.
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Note added in proof In Theorem 4.2 it suffices to assume the set E is compact in ~n. This
follows by the fact that there exists a sequence E,,:::> E" + I of compact fat subsets of 1Ri" such
that E= nE" and each E" has zero Lebesgue measure on 8E.
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