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In this paper we give two non-trivial generalizations of a classical Bernstein
inequality which is apparently less known that that of Bernstein-Markov, viz.

[Pl k(1 —x?) "2 (lplig 1y — P2))'2,

for xe(—1,1), where p is a real polynomial of degp<k and |pl;_, 1=
sup|pl([ —1,1]), to the case of a compact set £ in R” with nonempty interior.
Contrary to the situation where estimates for p'(x) are sought on the whole
compact set, we do not, in general, need any other assumptions on E. Our results
point out connections between Bernstein’s inequality and two important notions in
modern polynomial approximation theory on compacta in C™ Siciak’s extremal
function and complex equilibrium measure.  © 1992 Academic Press, Inc.

Introduction and Statement of the Main Results. We start with some
classical inequalities for polynomials: the Bernstein—-Markov inequality (see

[11])

(L1) 1P <k(1—=x*)""|plip_1y,  for xe(=1,1),

and the Bernstein inequality (see [91])

(12) P Cl k(I —=x?) "2 (Ipllf_ 3= p2x)2 for xe(—1L, 1),
where p is a real polynomial with deg p<k. It is easily seen that (1.1)
implies

1
(1.3) | 1Pl de<akiplic s

* The contents of this paper comprises a slightly modified part of the author’s Ph.D. thesis,
written at the Jagiellonian University, under the direction of Professor Wiestaw Plesniak.
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The main goal of this paper is to prove analogous results in the multi-
variate case. Let us begin with some definitions and facts from complex
analysis of several variables.

If £ is a compact subset of C" (n>1) then we define Siciak’s extremal
function @ as follows (see [19]).

1.4. DEFINITION. @ (z) =sup(|p(z)|"*8?: peC[w,, .., w,], degp=>1,
I pllz<1}, for zeC”, where || p| =sup|p|(E). The above extremal func-
tion is also called the polynomial extremal function as opposed to the
plurisubharmonic extremal function ¥, and its upper regularization V%
defined as follows.

L.5. DEFINITION.  V(z)=sup{u(z):ue ¥,, u| <0}, for zeC", where
%, denotes the Lelong class of plurisubharmonic functions in C*
(briefly, PSH{C")) with logarithmic growth: %, = {x¥ e PSH(C"):
sup{u(z)—log(l +|z|): zeC"} < 0 }.

(1.6) VE(z)=lum sup V(w), zeC”

w—z

The crucial fact is that

1.7. ZACHARIUTA-SICIAK THEOREM (see [23,201). V.=log d,.

For other properties of the extremal functions we refer the reader to
Siciak’s papers [20,21]. We will need the notions of L-regularity and
pluripolarity.

1.8. DerINITION.  We call a compact set £ L-regular at a point ae E if
V¥(a)=0 and we say that E is L-regular if £ is L-regular at every point
aeE. 1t is known (see [20,23]) that E is L-regular if and only if ¥ is
continuous in C”. Often, it is possible to use the following geometrical
criterion for the L-regularity.

1.9. ProposiTioN (Cegrell [10], Plesniak [17], Sadullaev [187). Given
ae E, suppose that there exists an analytic mapping h: [0, 11— E such that
h(0)=a. If VEh(1))=0 for each te (0, 1] then V¥(a)=0.

A pluripolar set is defined as follows.

1.10. DeFNITION.  We call a set F pluripolar if there exists a function
ue PSH(C") such that E< {u= —oc}.

If a compact set E is not pluripolar then V(e PSH(C")n L;2(C") (see

{s]9

640,69,2-4
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[20]). In this case we define the complex equilibrium measure i as the
value of the complex Monge-Ampére operator on the function V¥.

1.11. DEFINITION. A= (dd‘V'})". Then iy is a Borel measure on C”
(for details we refer to Bedford and Taylor’s paper [6]). We note that if
ue PSH n C*(2) then (dd“u)" is a Borel measure defined by

5
2

0u
| v

e

Z; j

(dd‘u)" =n! 4" det [

where V, is the Lebesgue measure in C”. The main properties of the
complex equilibrium measure are contained in the following.

1.12. PROPOSITION [6,227. If E is a non-pluripolar compact set in C”,
then
Ag(C\EY=0,  2z(E)=(2n)",
where E={ze C™ | p(z)| < || pl ¢ for each pe C[wy, .., w,]}.

We now may formulate our main results. Let E be a compact set in R".
We regard here R”" as a subset of C” such that C” =R" + /R”. We need the
following definition.

1.13. DeriNiTioN.  If E is a compact subset of R” then we put

.1
D Veg(x)= lim " Vg(x + iee;)

e—0+

and
.1 . .1 .
grad, Vi(x)={ lm - Vg(x+icey), ..., lim = Vg(x+ice,)),
=0+ € e—0+ &

for x e E, where {e,, .., e,} is the standard orthonormal basis in R”",

1.1.4. THEOREM. Let E be a compact set in R" with nonempty interior.
Then for every x e int(E) we have the following inequality for a real polyno-
mial p

|D; p(x)| < (deg p) D Vi(x)(lIplz— p* (x> for j=1,..n

and

lgrad p(x)| <(deg p) Igrad , V.(x)| (I pll%Z— p*(x))*2
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1.15. TueoreM. Let E be a compact L-regular set in R” with nonempty
interior. Then the measure gl g, is absolutely continuous with respect o
the Lebesgue measure and

1 ,
vol (conv { (1= p2(x))~** grad p(x): peR[z], deg p> 1,
deg p

i
lple<1 and |p(x)| <1 on int(E))} Sji(x"j.
n!

Jor almost every x eint(E) (with respect to the Lebesgue measure), wiere
AMx) dx = Aglipye- If n=1, then the above equality reduces to

1
sup {d— (1= p*(x))~"? [p'(x)]: peR[z], deg p>1,
eg p

Pl <1 and |p(x)| <1 on int(E)} S%i{x}.

In this paper we prove only Theorem 1.14. It will be done in Section 2
while in Section 3 we discuss some special cases and examples to this
theorem. The proof of Theorem 1.15, which we omit here (because it is
more longer and difficult) will be published in a forthcoming paper [5]
(see also [3]). However, in Section 4 we present some examples and
applications of this theorem.

2

Proof of Theorem 1.14. The proof is based on the properties of the
Joukowski function and its inverse. For zeC\{0} we define the
holomorphic function g(z)=(1/2)(z+ 1/z), called the Joukowski function.
It is univalent on |z| > 1 and its inverse is of the form A(z) =z + (2% — 1}'7,
if we choose an appropriate branch of the square root. The function log |4]

is subharmonic in C and it is well known that
D 1(2) = A2, for zeC.

In our considerations the crucial role is played by the following equality for
the above defined function g:

(2.1) lg(z)+ 1] +|g(z) -1 =2g(|z]),  z#0.

Note that every holomorphic in C\{0}, non-constant solution of Eq. (2.1}
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has a form g((az)?) with some ¢>0 and peN (see [2]). From (2.1) it
follows that

(22) h(z)| =h(3lz+ 1 +31z—1]),

for each z e C, where at the right-hand side we have h(¢) =1+ (> — 1) for
t = 1 with the arithmetic root. It is easy to verify the following estimates for
the function A(z):

(2.3) S2 (= 1) =Lt —1)*<log h(1) < /2 (1—1)7?

for every 1= 1. An easy computation shows that the following proposition
holds.

2.4. PROPOSITION. (i) Ifae(—1,1)and e>0, feR, then
loglh(o+ ief)I < IBI(1 — o)~
(ii)) Ifae(—1,1),0<e<1/2, BeR, and || <1 — |al, then
(1-6) 1B] (1 )~ <~ loglh(a+ is).

Consider a real polynomial p with | p|l ;< 1. By well-known properties of
plurisubharmonic functions (see, e.g., [12]) we have log|ho- p| e PSH(C")
and moreover, by 2.2, we have (1/deg p)loglh- p| € %,. Hence, by Defini-
tion 1.5 we obtain

(2.5) loglh(p(z))| < V(2)

deg p

for every ze C”. Taylor’s formula for p now yields

(2.6)  p(x+ieer)=p(x)+ieDep(x)+ ). % p(x)(ie)™,

2€sm<degyp

for 1 <k <n. It follows from Proposition 2.4 and (2.6) that
.1 . _
(2.7) Jim = loglh(p(x + fee,))| = Dy p(x)l (1 —pix)) 2

for xe E. But (2.7) together with (2.5) implies
(2.8) lgrad p(x)| < (deg p) lgrad . Ve(x)| (1=~ p*(x))'™

If now p is any real polynomial then we apply (2.8) to the polynomial
p/(lpll £+ J), and letting 6 —» 0+ completes the proof of Theorem 1.14.
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29. Remark. If E is a compact set in R” then it follows easily that
D (z) =sup{lh(p(z))| V"¢ " pe R[w,, ., w,], deg p= 1, [pllp< 1}, where
h denotes, as in the whole paper, the inverse function to the Joukowski
function.

3

In this section we consider some special cases of Theorem 1.14. Let F be
a compact, convex, and symmetric subset of R” with int(E) # &J. By E* we
denote the dual convex set to E:

EF*={xeR"x-y<1 for each ye E}.
It is known that
D (z)=sup{|h(z-w)|: we dE*},
for ze C” (see [14, 7]) and more precisely [1],
(3.1) D (z)=sup{|h(z-w)|: weextr(E*)},

where extr(E*) denotes the set of all extremal points of E*. In the special
case of E=B,={xeR™ x}+ --- +x2< 1} we have (see [15,1])

Pp(z)=(h(|z]>+ |2 = 1|)"?,  zeC",

where z2=z2+ ... +z2.
An easy computation shows that

lgrad , Vg (x)| =(n—1+(1—x*)")2</n(l = x%)" "2
Thus it follows from Theorem 1.14 that for each real polynomial p
lgrad p(x)| < (deg p)(n— 1+ (1—x%) ") (|| p|3, — p2(x))'"*.

for |x| < 1, which extends the Bernstein inequality {1.2).

Let now f be any norm in R” and put E= {xeR™ f(x)<1}. It is easy to
check that f(x)=sup{|x-w|: weextr(E*)}. Since E is compact, convex,
and symmetric (with nonempty interior) it follows from (3.1) that

1
(3.2) lim — Vig(x+ icey)
e-0+ &

=sup{|e,-w| (1 — (x-w)’)~ "% weextr(E*)}

< fled(t—f2(x) ™17
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if f(x)<1. This yields the following generalization of the Bernstein
inequality:

3.3. PROPOSITION. Let E={f(x)< 1}, where f is a norm in R". Then
|D; p(x)] < (deg p) fle)(1 = f2(x)) "2 (I pllz— PP (x)"?
if f(x)< 1, where p is any real polynomial and j=1, ..., n.

It is clear that V< Vg, if Fc E. A trivial verification shows that if a
compact set E has nonempty interior and x eint(E) then

|lgrad, V- (x)| < /n/dist(x, OF). (3.4)

In particular, |grad | Vg(x)| is always finite if x is an interior point of E.

3.5. ExampLE. Let S, be the standard simplex in R*:

S,={xeR:x,,..,x,=20and x;+ --- +x,<1}.

Then (see [1]) we have @g(z)=h(|z\|+ - +lz,|+ |z, + - +2,—1])
for ze C". An easy computation shows that

lgrad, Vg (x)|=n(l—x,— -+ —x,) "+ 1/x + - + 1/x,)'2

Now we will prove an interesting version of Bernstein’s inequality for
convex sets in R™. Let £ be a compact, convex subset of R” with non empty
interior. For simplicity assume that O € int(E). Then the following proposi-
tion holds.

3.6. PrROPOSITION (see [4]). If E is a compact, convex subset of R" with
Oeint(E) and E* is the convex dual set to E, then

h(M)‘, for zeC®,

Dp(z)< inf sup [—d-wip

deint(E) , . x

where K= (2/(1+ |a|))extr(E*), a=inf{x-y:x€E, yeE*}, and B=
—(1+a)/(1 + |a]).

Now, fix xeint(E). Let d'=(1/2)(x + d) for any deint(E). By Proposi-
tion 3.6 we obtain

Ve(x+iee;)< inf suplog
deint(E) ek

/ ((1/2)(x—d) ‘w4 ieejw>
T 1w+ gl :




o
(¥
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Hence we get

DY Ve(xy< inf  suple;-w| (1—|d -w+p|)"*

deint(E) wkK

(x—d)-w -t
x<1_<2(1—ld’-w+ﬁ|)> )
\2
j

= inf sup |e;-w| {(1—|d’-w—{—ﬁl)z—(%(x—d)-w }
J

deint(£) we kK

12

< inf  sup fe;-w|(1—|x-w+8)) 2 (L —|d-w+B]) 12

dsint(E) we K

< sup (le;-wi/|w|)(dist(x, 0E))~"*

wek

inf (dist(d, OF)) "™

deint(£E)

(Here e, ..., e, denotes the standard orthonormal basis in R”.) The above
inequality yields the following

3.7. THEOREM. Let E be a convex, compact subset of R* and such that
Oeint(E). Then for every real polynomial p we have the Bernstein inequality

|D; p(x)| < (deg p) M(dist(x, dE)) "2 (I pll 2 — p*(x))"?,
for xeint(E), j=1, .., n, where the constant M is equal 1o

M= max sup (le;-wl/|w|) inf (dist(d, 2E)) "2

j=1,..n wek deint(£)

3.8. Remark. H E is any compact, convex subset of R” with nonempty
interior and b eint(E), then O eint(E— b) and we may apply Theorem 3.7
to the subset E—b. This gives the Bernstein inequality for the set E with
a different constant M than that of Theorem 3.7.

3.9. Remark. We shall say that a compact subset E of R (with
nonempty interior) has Bernstein’s property if for every real polynomial p
the following inequalities hold:

|D; p(x)| < (deg p) M(dist(x, CE))~* (llpl 3 — p*(x)'?,  for xeint(E).
j=1,..n, where M>0 and O< pu<1. Observe that every compact subset

of R” with nonempty interior satisfies the above inequality with the con-
stant u = 1. We conjecture that every fat (£ < int(£)) compact subset of R"
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that preserves Bernstein’s inequality with u <1 has the following Markov

property: There exists a constant M such that for every real polynomial p,
ID;pll < M(deg p)* | plig, j=1..,n

with a=1/(1 —pu).

We also note that the above conjecture is true in the case of compact,
convex sets (see [16]).

4

In this section we will prove the following two estimates for real polyno-
mials resulting from Theorem 1.15.

4.1. THEOREM. Let E be an L-regular compact subset of R" with noempty
interior. Then for almost every x €int(E) the following inequality holds

|grad p(x)| <27"(deg p) dlx) Ax)(Iplz— p*(x))",

Jor a real polynomial p, where A(x) is the density on int(E) (with respect to
the Lebesgue measure) of the complex equilibrium measure and

d(x)=[(di—x})- - -(d}—x 0 (@d1—x1) " + - +(d;~x7) ]2,
with d;=sup|z|(E), j=1, .., n.

4.2. THEOREM. [If E is a fat (E cint(E)) compact subset of R” with zero
Lebesgue measure on OFE, then

| lerad p(x)l dx < '(deg p) d(0) |l

for any real polynomial p, where d(x) is defined in Theorem 4.1.

4.3. Proof of Theorem 4.1. Without loss of generality we can assume
|p(x)| < | pll g for xeint(E). From Theorem 1.15 it follows that

nlvol(conv{ (|| pllz— p*(x)) " grad p(x),

+(di—x)" ey, ., £(dI—x)"e, ., £(d2—x2)"e,})

=n!2°|D;p(x)| (Ipliz— p*(x)) =2 (d}—x])~"2- - (di—x])~?
-(d?—x}H)"?.vol(conv{0, ey, ..., e,})
=2"|1D;p()l (Ipl 2~ p*(x)) "2 (@} —x}) "2 -0 (di—x7) V2

(d?—xHV2 < Mx) for j=1,..,n and for almost every
x e int(E).
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Here ¢é; denotes that the +(d?—x?)"?e; is missing. Combining these #
inequalities we obtain 4.1.

44, Proof of Theorem 4.2. Given a fat compact subset of R” define

1
F,.= {er: dist(x, 6E)>E'
J

and

E.= | B(x,1/(k+1)), for keN,

xeFy

where B(x, r) denotes the closed euclidean ball with center at x and radius
r. We have E, < E,, | and int(E) =] int(E,). Moreover, the sets E, are
compact, fact, and (by 1.9) L-regular. By 4.1 and 1.12 we obtain

[ lgrad p(x)] dx<n"(deg p) d(0) I pl

Yint{£L)

and letting k - oo gives 4.2.
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Note added in proof. In Theorem 4.2 it suffices to assume the set E is compact in R”. This
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that E={() E, and each E, has zero Lebesgue measure on JE.
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